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are used. The ZiPberman result for oscillation in the 
conductivity <xn matches the experimental values for 
conditions somewhat intermediate between the two 
and three band models, but the ZiPberman result for 
oscillation in the thermoelectric coefficient en" favors 
the two-band model. The right order of magnitude for 
oscillation in the Nernst-Ettinghausen effect €12" is 
obtained from the oscillations in the density of states. 

I. INTRODUCTION 

TH E equation of state of a real crystal such as 
NaCl has been considered by several investi

gators. Barron1,2 and Blackman3 using a Kellermann 
model4 of NaCl and assuming equal masses for sim
plicity have recently obtained values for the low-
temperature (r—> 0) Griineisen5 parameter 70. Barron 
was able to find a high-temperature ( T > 9 , where 6 
is the Debye temperature) Griineisen parameter 7^ by 
defining a weighted 7 in terms of the moments of the 
frequency spectrum with (vf) the 5 th moment 

Y(S) = £ ™ V £ i ^=~(-Vln( , / ) /^ lnF, (1) 

where 

yi=-d\nvi/dlnV (2) 

* Work performed at New York University and partially 
supported by the U. S. Air Force. 

f Much of the material included in this paper was used in a 
Ph.D. dissertation at New York University (1963). 

1 T. H. K. Barron, Phil. Mag. 46, 720 (1955). 
2 T . H. K. Barron, Ann. Phys. (N. Y.) 1, 77 (1957). 
3 M . Blackman, Proc. Phys. Soc. (London) B70, 827 (1957). 
4 E. W. Kellermann, Trans. Roy. Soc. (London) 238, 513 (1940). 
5 E. Griineisen, in Handbuck der Physik, edited by A. Geiger and 

Karl Scheel (Julius Springer-Verlag, Berlin, 1926), Vol. 10, p. 22. 
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and vi is a normal vibration frequency, V is the volume, 
and the sum over i here and in all such expressions is 
to be taken over all normal modes of vibration. He 
found expressions for 7(2) which he maintained should 
be approximately equal to 7(0)=y0 0 and by making 
use of the elastic constants found aYo=7(—3). I t was 
found that deviations from Griineisen's relation should 
occur at 0.39. Barron then compared his work to 
Born's6 and Slater's.7 Slater's formula, which is derived 
from a consideration of the elastic constants, is 

7 s = ^ l n ( x F - 1 / 3 ) / ^ l n F , (3) 

where x is the compressibility and V is the volume. 
This formula was derived under two assumptions, one 
being that Poisson's ratio is constant and the other 
that there is a characteristic temperature given by 
Debye's expression for an isotropic continuum, 

e — — ) ( — + — > (4) 

6 M. Born, Atomtheorie des Festen Zustandes (B.G. Teubner, 
Leipzig, 1923). 

7 J. C. Slater, Introduction to Chemical Physics (McGraw-Hill 
Book Company, Inc., New York, 1939), Chap. XIV. 
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The equation of state of NaCl is given using the Kellermann model of NaCl as well as a modified model 
making use of a repulsive potential energy of the Born-Mayer form Ae~Br. The Griineisen parameter 
ji = —dlnvi/d InF, where vi is the normal mode frequency and V is the volume, is derived by the development 
of a perturbation method in the volume. This is then used where needed to calculate all thermodynamic 
quantities of interest using an IBM 7090. A spectrum of 11 454 frequencies and 7,-'s are used in finding these 
quantities rather than the approximations made previously of utilizing the elastic constants and the moment 
expansion y(S) = ̂ iyms/^i vis= —(l/S)dln{vis)/dlnV, where (vis) is the 5th moment of the frequency 
distribution. To check previous work by Barron and Blackman 7(0), 7(2), 7(1), and 7(—3) were calculated 
where 7(0) =70D, the high-temperature 7, and 7(—3) =70, the low temperature 7. Fair agreement is found 
for 7(—3), whereas the deviation in 7(2) is high. 
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TABLE I. Griineisen T'S for NaCl found by various investigators, n is the exponent in the repulsive potential energy. 

Barron Blackman Born Arenstein et al. 
Yates and 

Panter 

n 
70 
7(2) 
7« 

7.6 

1.60 
1 
1.67 

8.3 

1.72 

7 
1.15 
1.50 

8.55 
1.46 
1.76 

8 
1.47 

2.2 

7.6 
1.002 
1.379 
1.480 

8.3 
1.071 
1.498 
1.595 

Experimental 

1.59 

where N is the total number of particles and Ci and C% 
are the longitudinal and transverse elastic wave 
velocities, respectively. Slater's formula gives us 
directly 7s=f(W+6), where n is the exponent in the 
repulsive potential energy. The Y'S found by these 
various investigators are given in Table I. 

In our study of NaCl we use both the Kellermann 
model of NaCl and a modified Kellermann model. The 
Kellermann model is modified by assuming that the 
repulsive term is the Born-Mayer potential Ae~~Br, 
where A and B are constants. It is summed over nearest 
neighbors and put into the form used by Kellermann. 
This potential was picked because of its use in various 
problems using interatomic potentials. However, since 
we do not have as yet good values for A and B we 
consider them independent of r and vary them so as to 
give comparisons with experimental results. Using 
perturbation theory8 we are able to derive a formula 
for the 7/s. Thus, we calculated with an IBM 7090 all 
physical quantities of interest using the following 
formulas, substituting the derived yi where needed. 
For pressure as a function of volume and temperature 
[from p= — (6F/dV)T, where F is the free energy] 

F -
dU0 1 

+ 

dV V 
' 2s i yi&ij 

dU0' 1 
+ 

dV V 
' 2Lsi Ifi^i j 

(5) 

(6) 

where U0 is the static lattice energy — ae2/r+6Ae~Br; 
a is Madelung's constant; £V is the static lattice energy 
plus the zero-point energy X ; (%hvi); 

and 
Ei= { W 2 + W C e x p ( W * 3 T ) - l ] } 

Ei'=hvi/lexp(hvi/kT)-ll. 

We can express Eqs. (5) and (6) in the Mie-Griineisen 
form if we define two temperature- and volume-
dependent y% y(V,T) = Zi7iEi/ZiEi and y'(V,T) 
— ̂ iyiEi/^iEi. For compressibility we have 

1 d2U0 1 1 d 

X dV2 V V dV 
(7) 

8 E. M. Arase and R. D. Hatcher, J. Chem. Phys. 33, 1704 
(1960). 

For thermal expansion we have 

^-ZiyidEi/dT (8) 

and we compare this to the Griineisen relation 

xy" 
0= ZidEi/dT. (9) 

Since the specific heat at constant volume Cy was 
needed for the thermal expansion it has been evaluated 
at different temperatures and volumes. We have 

CV=S.636SX10U Zi dEi/dT (10) 

(where the factor before the summation sign gives us 
the units cal/g-mole-°C). 

Comparisons with experimental results are made 
where possible. Since many of the thermodynamic 
quantities are derived from indirect measurements (for 
example, the relationships used to relate the actual 
measurements to compressibility or to specific heat at 
constant volume make use of the thermal expansion 
and Griineisen's relation), they cannot be exactly 
correct for low temperature (r<0.39). 

II. KELLERMANN AND MODIFIED KELLERMANN 
MODEL OF NaCl 

Kellermann assumed in his model that the energy 
per cell <j> could be written in the form 

cj)=—ae2/r+c/rn, (ID 

where r is the interionic separation and c and n are 
some constants which are eliminated in the coupling 
coefficients by applying the equilibrium and com
pressibility conditions. The coupling coefficients are 
split into Coulomb and repulsive terms. For the 
Coulomb terms we have 

rkk'~\c e2 / <r \ 

U~rfj- <12) 
where o- is the wave vector; x and y='(%9y,z)', k is the 
basis index and is 1 and 2 for the NaCl crystal; G is a 
dimensionless quantity; e is the charge of the electron; 
Va= 2ro3, is the volume of a unit cell, where ro is the 
nearest neighbor equilibrium distance. For the repulsive 
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(R+2S)dxy, 

terms we have 

rkk-\B e2 

LxyJ " Va 

rkk'-f e2 (13) 
= [^€082^0-^0+^(0082^0-^0 

LxyJ Va 

+cos27rovo)]5s3/, 

where R and S are given by 

#=12fo4 /X0e2+fa, 
5 = - f a , (14) 

and X0 is the isothermal compressibility. 
I t can be seen from Eq. (14) that the only quantities 

in the coupling coefficients varying with a change in 
volume are ro and the isothermal compressibility X0. 

For our purposes in investigating the equation of 
state and then finding the compressibility from it we 
do not eliminate the parameters in the repulsive term. 
For the Born-Mayer potential energy form we have 

the coupling coefficients ciij are the unperturbed 
quantities. 

To eliminate the volume from the Coulomb terms 
and thus to have only the repulsive terms depending 
on the volume, we write (where VQ is the volume of a 
basic cell) 

and 
Xw°=(FoA2)(a>M°)2. 

Rewriting Eq. (18), we have 

\ or/. o__y^ ./...or/, o—o 

(19a) 

(19b) 

(20) 

To find the eigenfrequencies at a new volume we 
must express the new eigenfrequencies in terms of the 
unperturbed frequencies and eigenvectors at the initial 
volume. This is possible since the eigenfrequencies 
belonging to the same wave vector change but little 
with small changes in volume. In addition, this method 
may be extended to include second neighbor repulsive 
forces as a perturbation. Thus, we have 

<!>=:—a#/r+AerBr, (15) A-m U im 2~/3 Uij U j m —U , (21) 

where A and B are adjustable parameters. Putting the 
repulsive term in the Kellermann bracket form, we have 

rkk"\B 

\-xy J 
Hi (4>kk>l)xy exp(2iri<rrkk>

1). (16) 

When k'j^k the sum extends over 6 nearest neighbors 
given by vectors r0(=bl, 0, 0), fo(0, ± 1 , 0 ) and 
fo(0, 0, dbl). Thus, we find 

•1 2-1* F 0 4cBAr<?e~Br» 

.x xJ e2 e2 

where Xm '= V'(o)m')2/e2) V is the new volume and «« 
is the new frequency. 

Since the perturbed quantities vary but little from 
the unperturbed ones, we may expand the perturbed 
eigenvalues, eigenvectors, and coupling coefficients in 
a series 

Um'=Um°+eUm
1+#Um*+-

Xw ' -Xm°+eXw
1+62Xm

2+--- (22) 

XZBr0 cosirqx— (COSTT^+COSTT^)] , (17) 

f l l~\BVa 4BAr0
2e-BrQ_ 

,2 ^ 

•1 In* 

.x xJ 
- [ 2 - £ r 0 ] . 

I t may be seen from Eq. (17) that the only quantity 
varying with volume is r0. 

The zero-order terms result in Eq. (20) while the 
first-order equation is 

f^m U im ~T"A#i U im ' Z-/3 \yij U jm \~Oi3 U jm )==\J. \^"JJ 

In the case where Xm° is nondegenerate, even though 
some other eigenvalues belonging to the complete set 
of eigenvectors may be degenerate, we may expand the 
perturbed eigenvectors in terms of the unperturbed 
set such that 

Letting9 
III. PERTURBED FREQUENCIES UiJ=Y.hgkmUik\ (24) 

1 rk k'-\ 

nk>)1/2Lx yJ (mkmk>) 

we write the equation for the ionic displacements for 
NaCl as 

(^yUim'-Zj aifUjm^0, (18) 

where the eigenfrequency o>°, the eigenvector £7°, and 

9 We introduce for convenience new notation i = l, 2, -••, 6 
standing for (Kx) = lx, 2x, ly, 2y, Is, 2z. 

where gkm is a constant, and substituting Eq. (24) into 
Eq. (23) we obtain 

Hk \n?gkmUik°+\m
1Uim°=n£s V r * gkmUih° 

+ E i V ^ i m ° . (25) 

In the term Ho bij° H& gk
mUjk° the summations may 

be interchanged and since from Eq. (20) Hi bij°U3-m° 
= \m°Uim° we obtain after substituting in Eq. (25) 

Zk \m°gkmUik
Q+Xm

lUim
Q=j:k gk

mXk°UikP 

+ E i V t f * (26) 

file:///~Oi3
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Multiplying Eq. (26) by Uni°, since the vectors Uni° and 
are real, and summing over i, making use of the ortho- i 
normality of the unperturbed eigenvectors Uni° we bi2

1== [_(R(r)—R(ro)) cosirqx 

obtain (m1m2)
l/2 

\Jdmn+ (X„0-X„0)g„w=Ei.i UmWUjm
Q=Bnm'. (27) + (5( r ) -5( ro) ) (cos i r^+cos i r^ ) ] , (35) 

If m=n we obtain w i t h s i m i i a r terms for bul and bM\ 

A m —2-/i,3 Umi b{j U j m =JJmm • {^OJ THE T-'S 

Thus, we may write for the perturbed circular r . ,, Tr „ , , , , . 
P ' . J r r or the Kellermann model we obtain 
frequencies, 

(36) 

* = — — - T - - (38) 

7 0 e2 r 0 W e 2 r l2r 4 12r0
4' 

c o ^ ^ i - 5 ^ . (29) C ° 2 = = ~ T ~ + d ~ ^ 7 ~ ^ " l 
V V r 2rL e2X e3X0 J 

where 
Equations (28) and (29) are valid for degenerate . 
eigenvalues only if Bnm'=Q. In this event the perturbed Y = r ( ^ i m ° ) 2 + (U%m°)2+ (U5m°)2l 
eigenvalues are again degenerate. For the NaCl crystal m\ 
the degeneracy is due to the symmetry of the crystal 
itself. The degeneracy would not be removed by going j - J L r m ov> . tjj o\i\. t TJ o^n 
to higher order terms in the perturbation series. Hence, ^ 2m ) -r\ im ) ~r\ 6m J J 
the above equations may also be used to find the per
turbed frequencies for the degenerate case. 1 

For the Kellermann model of NaCl we have + ~ ~-(Ulm°U2m
0 cos>jrqx+U3m°UAm

0 COSTT^ 
(m]W 2 ) 1 / 2 

f 1 +U,JU6Jcoswqz). (37) 
Bmm' = AR\—t(U1jy+ (UZJ)2+ (*75m

0)2] 
I nil We have then from Eq. (2) 

+—L(u2jy+ (uAm»y+ (u6jyi -v dr d»* 
™2 2co,2 dV At 

2 and 
+ 7 ^ ( U l m ° U 2 J cosirqx+UzJU,J co$>irqy n H 0 4 1 9 , 

(m1m2)
112 dai? — 3r Oco0

2 3e2rl2rA 1 2 r 0
4 l 

. TT OTT 0 J rim dr ^ 2r4Le2X e 2 X 0 J 
+ UQm°Ubm

0 coswqz) , (30) 
J e2r48f3 \2r*/dx\ 1 

_| ( ] p^ (39) 
where AR is the change in R as denned in Eq. (14): 2f3L e2x e2x2\ dr) T-^ 

A X = i * y * x - i 2 r . y * x . , (3i) T h u S ) W e w r i t e f o r 7 a a t , = r o 

where r and x are the new lattice constant and com- 9 2 

pressibility, respectively. *f ^ i f l ^ ! ! ! / ^ ] r l . (4 0) 
For the modified Kellermann model of NaCl we have * 2 I co0

2L X0 X 0
2 \ d r / z J J 

S m i ' ^ u 1 ! (^im°)2+(f/3m0)2+(^5m0)2 T h i s f o r m u l a f o r ? « can be used in an equation of 
[ state and a self-consistent technique developed to get 

the compressibility, the thermal expansion, and the 
_| 1-nU2m0)2+(U4m

0)2+(Uem°)2l\ other quantities of physical interest at different 
m2 J temperatures. 

_i_or-A ITT OTT o\h in OTT o I t : i s °f interest to compare this yik to Slater's ys. 
Inus, 7s can be written as 

^o r0
2/dx\ "11 

K0 X o 2 \ a r / r J J ' 

r4r 0 r0
2/dx\ 

" (41) 
Xn 

where ld\nxV
1,z 1 Xo 

Ts = - — = - 1 - — 
, 1 1 r r , / N , o o / N T,/ N no/ N-I / „ N 2 d l n F 2 3f( 

i i i ^ — [12(f)+25(f)- i2(ro)-25'(fo)] , (S3) 
mi If we assume that ys equals yt at some particular 

R(r^ — 4.B'2Ar£e~BrQ/e2 frequencies, the condition for equality is 
S{n) = -ABAr 0

2e-Br«/e2, (34) 2r/o>0
2= X0/3r0. (42) 
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To see that this assumption is approximately correct 
we pick a particular direction in the crystal such that 
qx=qy=qz=Q a n d for simplicity we assume equal 
masses taking the average mass in the equation for I \ 
This gives r = l / r a and o>o2 = 6r0/(mX0). Using r 0 =2.8 
X10"8 cm, X0=4.0X10-12 cm2/dyn, and m==4.8XlO~24 

g, we have w0=3.0Xl01 8 cycles/sec which is close to 
the resonance frequency. Thus, ya at the same reso
nance frequency 3.0X1013 cycles/sec should be equal 
to YS. 

The Y / S for the modified Kellermann model (7^ ) 
have been found for a total of 11454 frequencies 
obtained for the first-Brillouin zone and it is to be 
expected that the yim should be approximately equal 
to the yik for the Kellermann model so that the yim 

for 3X1013 cycles/sec should be approximately equal 
to 7,. We find for 4 = 1.474X10"-* erg, £ = 3.048X108 

cm"1, and i?=2.814X10~-8 cm that y{ equals 2.44 and 
this is sufficiently close to 7S which equals 2.33 for 
n=S to justify our assumption that 7 a = 7 s at the 
resonance frequency. 

For the modified Kellermann model we obtain 

2.6 

-Bn 
r3 2r3 

(where Bmm' is defined in Sec. C). We find for 7* 

± | o u>±jmm 

(43) 

l r e2 dBmm'~\ 
- 1 — , (44) 
2L 6r0W dr J 

where 

wumm 

dr [mi 

m2 

(ntim2) 1/2 
( C O S ^ Z7im° U2m°+ COS7T&, UZm° U4m° 

+cosTrqzU^m°U&m
0) 

+2S'\—\:(u1jy+ (uzjy+ (u^n 

m2 

1 
- [ (co$wqy+ coswqs) Uim° U2m° 

(mim2)
112 

+ (coSTqx+coSTrqz)Uzm°U4m° 

+ (coswqx+ cosirqv) U5m° ̂ 6m°] L (45) 

FIG. 1. Gruneisen 
parameter y; versus 
i^o.o for a lattice 
separation of 2.814 
X10~8 cm and with 
^ = 1.474X10-9 erg; 
B = 3.048 X W c m - 1 . 
Four curves corre
sponding to the six 
branches of the crys
tal with the trans
verse modes being 
double. Dashed lines 
indicate extrapola
tion to the (0,0,0) 
values. 

with 

Vi, 

0,0,0 12,0,0 
Px,0,0 

(46) 

R'= (W2A/e2)(3r0
2--Broz)e-B^, 

S'= - (4:BA/e2) (2r0-Br0
2)e-Bro. 

V. CHOICE OF PARAMETERS 

The calculations depend on the choice for parameters 
A and B in the repulsive term, and it is found that 
many different sets of A and B will give good results 
for compressibility, for example, but poor results for 
the resonance frequency. We chose, therefore, several 
sets of A and B and compared results. For one set we 
took the values found in Born and Huang10 with a 
nearest neighbor distance of 2.814X10 -8 cm and 
^ = 1.474X10~9 erg, 5=3 .048X10 8 cm"1 which give 
good results for the cohesive energy and compressibility. 
For another set we took 4̂ = 2.550X10~9 erg and 
Z?=3.291X108 cm - 1 which were chosen to give a better 
value of the resonance frequency as well as the com
pressibility. Other sets of A and B are chosen, for 
example, 5 = 3.198X10 cm"1 while 4 = 2.247X10-°, 
2.147X10"9, and 2.100X10"9 to see how much the 7's 
vary when B is held fixed and A changes. If we assume 
the equilibrium condition holds, then we can relate our 
choices of B in the Born-Mayer potential with the 
exponent n in the r~n repulsive potential energy used 
by Kellermann. For example, 5=3.048X10~ 8 cm - 1 

gives n=7.6 and Z?=3.291 X1Q8 cm - 1 gives n=&.3, 
where, in general, n=BrQ—1. 

VI. VALUES OF THE VS 

In our calculations we use the frequencies and the 
7's for 73 choices of the wave vector <y totalling 11 454 
frequencies and 7 / s when weighted by their multi
plicities. This was done for different lattice separations 
and parameters A and B. Since the program used did 
not give the correct values for the (0,0,0) position we 
have found them by extrapolation as in Fig. 1 where 
we plotted 7* against a particular direction in the 

10 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Clarendon Press, Oxford, 1954), Chap. I. 
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crystal; namely, the [P#00] direction, where Px varies 
from 12 to 0. We see that the 7 / s vary over a wide 
range and, as Blackman11 and Barron12 have found, 
from about —J to about 3. Thus, GrtineisenV3 con
tention that they are constant is far from true. 

Using the variation of the resonance frequency with 
nearest neighbor distance (see Table II) we have 
calculated 7*= — (V/3o>) (Ao>/Ar), where Aw is the change 
of frequency for two different nearest neighbor distances 
and Ar is the change in the nearest neighbor distance. 

This was done for the values r0= 2.8100, 2.8140, and 
2.8200 giving two values for Aoo/Ar which we averaged 
to find (Aco)av/Af=-7.21 and thus 7*= 2.44 which 
agrees exactly with the value found using the equation 
for ji at the peak frequency. Since we also calculated 
dy/dr for each frequency this value was checked the 
same way. The average value of Ay/Ar was 0.560X109 

cm"1 while the equation gives 0.5581 X109 cm -1 , a 
deviation of less than 0.4%. 

The values for the various temperature dependent 
Y'S can be found in Table I and in Tables I I I -VL I t is 
of interest to compare these values with those obtained 
theoretically by Barron14 and Blackman15 and with the 
experimental y" values found by Yates and Panter.16 

We notice a difference of up to 7% between 7(2) and 
7(0)=7 W for the various sets of A and B in the above 
tables. Using Eq. (1) given the second moment for 
NaCl, (assuming equal mass M for the ions) 

<„*>=1.74( - ) ( n - l ) ( ~ ) , 

where e is the charge of the electron, a is the nearest 
neighbor distance at equilibrium, rx is the new distance, 
and n is the exponent of the repulsive potential energy, 

TABLE II. Resonance frequency and ji. 

4 = 1.474X10-* erg; A =2.550X10-9 erg; 
£ = 3.048X108 cm"1 B = 3.291 X108 cm"1 

(10~8 cm) 

2.7886 
2.7893 
2.7944 
2.8000 
2.8036 
2.8088 
2.8100 
2.8140 
2.8200 

(1013 cps) 

2.9656 
2.9604 
2.9229 
2.8819 
2.856 
2.8177 
2.8090 
2.780 
2.7367 

y% 

2.3112 
2.3146 
2.3395 
2.368 
2.386 
2.414 
2.4206 
2.4427 
2.4768 

(1013 cps) 

3.1094 
3.1036 
3.0617 
3.0160 
2.9867 
2.9445 
2.9348 
2.9025 
2.8542 

7i 

2.4606 
2.4643 
2.4917 
2.5228 
2.5433 
2.5738 
2.5810 
2.6054 
2.6432 

11 M. Blackman, Ref. & 
12 T. H. K. Barron, Refs. 1 and 2. 
13 E. Griineisen, Ref. 5. 
14 T. H. K. Barron, Refs. 1 and 2. 
15 M. Blackman, Ref. 3. 
16 B. Yates and C, H, Panter, Proc. Phys. Soc. (London) 80, 

373 (1962). 

TABLE III. y(S) for different lattice separations r0; 7 ' for 
different lattice separations r0 and for different temperatures T. 
A =2.550X10-9 erg, 5-3.291X108 cm"1. 

ro 
(10~8cm) 2.7886 2.7893 2.8036 2.8088 2.8140 2.8200 

7 (0)= T o o 1.5188 1.5207 1.5628 1.5789 1.5954 1.6151 
7 (2) 1.4831 1.4838 1.4916 1.4949 1.4976 1.5010 
7(1) 1.5305 1.5319 1.5566 1.5664 1.5759 1.5874 
T ( - 3 ) 1.0712 1.1776 1.2534 1.2981 

r(°K) 
320 
280 
200 
120 
80 
60 
40 
30 
20 
15 
11 
10 

1.5106 
1.5086 
1.5006 
1.4714 
1.4131 
1.3376 
1.1737 
1.0382 
0.89283 
0.84503 
0.83122 

1.5129 
1.5110 
1.5031 
1.4738 
1.4156 
1.3400 
1.1748 

1.5615 
1.5606 
1.5562 
1.5359 
1.4892 
1.4242 
1.2749 
1.1454 
1.0025 
0.95803 
0.95342 
0.95881 

1.5800 
1.5795 
1.5763 
1.5587 
1.5154 
1.4534 
1.3072 

1.5990 
1.5990 
1.5970 
1.5830 
1.5442 
1.4866 
1.3480 
1.2232 
1.0819 
1.0396 
1.0394 
1.0472 

1.6215 
1.6218 
1.6214 
1.6111 
1.5770 
1.5237 
1.3914 
1.2696 
1.1293 
1.0870 
1.0898 

Barron17 found that 7 (2) = J (n+2). A high-temperature 
experimental value quoted by Born18 and Yates and 
Panter19 which is 1.59 is in extremely good agreement 
with our Too for the ^ = 8 . 3 case. Apparently the cor
rection for the volume dependence of 7* and o>i was not 
taken into account in the calculations of 7o by Barron 
and Blackman. In Table I we listed our values of 7o 
taking the lattice separation to be 2.7886X10 -8 cm at 
0°K. At a room temperature lattice separation of 
2.8140X10-8 cm we have for ,4 = 2.550XK)-9 erg, 
B = 3.291 X108 cm-1 that Yo= 1.253; and for 4 = 1.474 
X10~9 erg, £=3 .048X10 8 cm"1 that 7 0 = 1.166, giving 
better agreement with Blackman's results. The experi
mental values of Yates and Panter19 are given from 30 
to 270°K. Their results are uncertain below 60° and 
at 60 °K they differ from our values by about 19%. In 
computing their values from other thermal data such 
as specific heat and compressibility no correction was 
made considering the new expansion data and they 
expect an accuracy for their data at low temperatures 
to within 15%. The deviations in the low-temperature 
values may be partially due to the above lack of cor
rections as well as the experimental uncertainties near 
and below 60°K. Slightly better comparisons can be 
expected by varying our A and B values. Yates and 
Panter's contention that the predicted numerical 
values of low-temperature 7 be revised does not seem 
to be justified since their accuracy below 60 °K is not 
high. As seen in Tables I I I and IV y' and y" approach 
a minimum at about 11°K and then rise to the 
7o=^7(—3) v a i u e # xhis was not predicted from previous 

17 T. H. K. Barron, Refs. 1 and 2. 
18 M. Born, Ref. 6. 
19 B. Yates and C. H. Panter, Ref. 16, 
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TABLE IV. 7 " for different lattice separations r0 and for different temperatures T; y" calculated from thermal data by 
Yates and Panter at 293°K volume. A = 2.550X10~9 erg, £ = 3.291 X108 cm"1. 

rQ (10~
8 cm) 

T (°K) 

750 
500 
400 
280 
270 
240 
200 
160 
120 
100 
80 
60 
50 
40 
30 
20 
15 
11 
10 

2.7886 

1.5203 

1.5206 
1.5209 
1.5206 
1.5171 
1.5106 
1.4934 
1.4451 
1.3923 
1.3005 
1.1485 
0.94846 
0.86683 
0.83150 

2.7893 

1.5224 

1.5227 
1.5230 
1.5228 
1.5194 
1.5130 
1.4960 
1.4481 

1.3037 

2.8036 

1.5663 

1.5673 
1.5686 
1.5703 
1.5709 
1.5681 
1.5572 
1.5200 
1.4755 
1.3942 
1.2526 
1.0566 
0.97559 
0.94446 

2.8088 

1.5830 

1.5842 
1.5860 
1.5883 
1.5902 
1.5887 
1.5799 
1.5462 

1.4264 

2.8140 

1.5962 
1.5971 
1.5979 
1.6002 

1.6017 
1.6038 
1.6069 
1.6102 
1.6101 
1.6036 
1.5740 
1.5354 
1.4616 
1.3280 
1.1353 
1.0544 
1.0252 
1.0258 

2.8200 

1.6206 

1.6223 
1.6249 
1.6287 
1.6338 
1.6352 
1.6312 
1.6060 
1.5709 
1.5016 
1.3729 
1.1824 
1.1014 
1.0731 

F293 

1.59 
1.57 
1.54 
1.53 
1.51 
1.49 
1.42 
1.22 
1.06 
0.82 

analyses20 although their experimental values of 7" for 
LiF seem to indicate a minimum at 120°K. That it 
occurs at a high temperature for this crystal is probably 
due to the high value of the Debye temperature in this 
case. From our data we see verification of Barron's 
result that y'(V,T) and y"(V,T) should decrease 
significantly below 0.39«80°K. In table V we have 

TABLE V. 7 for different lattice separations r0 and for different 
temperatures T. 

rQ (10~
8 cm) 

T (°K) 

280 
200 
120 
80 
60 
50 
40 
30 
20 
15 
11 
10 
0 

^=2.550X10~9ergs;5 = 

2.7886 

1.5139 
1.5148 
1.5180 
1.5208 
1.5242 
1.5276 
1.5298 
1.5303 
1.5304 

1.5305 

2.8036 

1.5506 
1.5471 
1.5474 
1.5489 
1.5513 
1.5540 
1.5560 
1.5564 
1.5566 
1.5566 
1.5566 

2.8100 

1.5793 
1.5759 
1.5682 
1.5627 
1.5617 

1.5644 

1.5684 

T A B L E VI. y(S) for different A's and B's (r0 

B (108 cm"1) 
A (lO"9 erg) 

7(1) 
7(2) 
T(0) 

T(-3) 

3.048 
1.474 
1.457 
1.379 
1.480 
1.166 

3.198 
2.100 
1.5214 
1.4522 
1.5327 
1.1699 

3.291 X 1 0 8 cm"1. 

2.8140 

1.5906 
1.5868 
1.5780 
1.5712 
1.5694 
1.5698 
1.5713 
1.5735 
1.5753 
1.5757 
1.5758 

1.5759 

2.8200 

1.5946 
1.5859 
1.5826 
1.5824 
1.5833 
1.5852 
1.5869 
1.5873 
1.5874 
1.5874 
1.5874 

= 2.814X10"8 cm). 

3.198 3.198 
2.147 2.247 
1.5096 1.4876 
1.4523 1.4522 
1.5090 1.4642 
1.1050 0.97425 

20 Recent experimental and theoretical work on MnO at low 
temperatures by S. Ganesan, Phil. Mag. 7, 197 (1962), indicates 
a rise in the values of the Griineisen parameter. He shows that 
7(2) <7(—3) and it is certainly possible as our work indicates 
that 7(0)>7(-3)>7(2) . 

y(V,T) data tabulated and we find that a minimum 
occurs at about 50 °K. It is about here that the zero-
point energy contribution to the thermal expansion 
becomes significant and the values smoothly tend to 
the limit 7(1) at 0°K. In Fig. 2 we have 7" versus r0 

at a constant temperature of 280°K where we see that 
7" varies fairly linearly with r<j. Several 7Js were calcu
lated for very high temperatures and we find that 7 
reaches a maximum at about 300 °K and then decreases 
slightly tending to its 7^=7(0) value. It must be 
remembered, however, that the change in volume and 
anharmonic terms at higher temperatures may make a 
considerable difference here. 

VII. COMPRESSIBILITY AND THERMAL 
EXPANSION 

In Table VII the compressibility for various volumes 
and temperatures is compared to experimental values,21 

the maximum deviation being about 4% at low tem
peratures. As noted before, approximate calculations 
were used in relating the experimental information to 

1.60 

1.50 

t" 
1.40 

1 F V S - V 
TEMPERATURE* 280* K 

• A=2.550 X I0-9ERGS-, B=3.29l X I08 CM"', 
. A=!.474 X IO"9 ERGSv B=3.048 X I0 8 CM 

2.7850 2.7950 2.8050 
r0 X !08 CM 

2.8I50 2.8250 

FIG. 2. Griineisen parameter 7 " versus r0 at a constant tem
perature of 280 K for two sets of parameters A and B. 

21 W. C. Overton and R. T\ Swim? Phys. Rev. 84, 758 (1951). 
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TABLE VII. Compressibility (in units of 10~12 cm2/dyn) for different temperatures keeping lattice separation ro constant and 
compressibility for different lattice separations keeping temperature constant at 280°K. 

r0 = 2.800X10-8cm 
^[=2.550X10-9 erg 
5 = 3.291X108cm~1 

T (°K) 

320 
280 
240 
200 
160 
120 
100 
80 
60 
40 

X 

3.9630 
3.9625 
3.9619 
3.9613 
3.9606 
3.9601 
3.9598 
3.9595 
3.9593 
3.9591 

ro (10 8 cm) 

2.7886 
2.7893 
2.7944 
2.8000 
2.8036 
2.8088 
2.8100 
2.8140 
2.8200 

^=2.550X10~9erg 
B = 3.291 X108 cm"1 

XT 

3.74 
3.76 
3.85 
3.96 
4.04 
4.15 
4.17 
4.26 
4.39 

^ = 1.474X10"9erg 
B = 3.048x108 cm"1 

XT 

3.80 
3.81 
3.90 
4.00 
4.07 
4.18 
4.20 
4.28 
4.40 

Experimental 
Constant 
entropy 

Xs 

3.89 
3.90 
3.95 
3.97 
4.01 
4.05 

4.07 

compressibility 
Constant 

temperature 
XT 

3.89 
3.91 
4.01 
4.06 
4.13 
4.20 

4.27 

the compressibility values so that little more error would 
be introduced in using our theoretical values of the 
compressibility to find the thermal expansion. In Table 
VIII the thermal expansion at various temperatures 
and lattice separations is given using Eq. (8). Since 

FIG. 3. Pressure 
versus lattice sepa
ration ro at two con
stant temperatures. 

2.800 2.8IO 
r0 X I 0 8 CM 

experimental values of p are found at atmospheric 
pressure the values of the thermal expansion in our 
table must be read at the correct lattice separation 
for a particular temperature in order to compare 
results. 

0.40 

0.38 f-

0.36 

0.34 

0.32 

0.30 

! 0.28 

; 0.26 
: 0.24 
' 0.22 
, 0.20 
: 0.18 
! 0.16 
| 0.14 
! 0.12 
: o.io 

0.08 

0.06 

0.04 

0.02 

O 

" A=l.474 X I0"9 ERGS ^ S 
' B=3.048 X I08 CM"1 ^ ^ 

- ^^^r^^ro-2.8036 X IO"8CM 

. r 0 s 2 . 8 0 8 8 X I 0 - 8 C M ^ ^ \ ^ * 

r ^ ^ ^ r ^ = 2 . 8 I O X I0"8 CM 

\ r©*2.8l4 X l O ^ C M ^ ^ 

( 

FIG. 4. Pressure 
versus temperature 
at various constant 
lattice separations. 

50 100 150 200 250 300 
T°K 

Approximate calculations of the lattice separation 
for a particular temperature using an empirical formula 

TABLE VIII. Thermal coefficient of expansion 0 (10~5 deg"1)- A =2.550X10"9 erg, £ = 3.291 X108 cm"1. 

ro (10~8 cm) 
T (°K) 

320 
280 
270 
240 
200 
160 
120 
100 
80 
60 
50 
40 
30 
20 
15 
11 
10 

2.7886 

8.0928 
7.2022 
5.8973 
4.0238 
2.8816 
1.71209 
0.72889 
0.17116 
0.059067 
0.019796 

2.7893 

10.430 
10.291 

10.084 
9.7553 
9.1925 
8.1331 
7.2406 
5.9323 
4.0518 

1.7274 

2.8036 

11.377 
11.235 

11.023 
10.685 
10.106 
9.0086 
8.0757 
6.6922 
4.6627 
3.3933 
2.0590 
0.89817 
0.21482 
0.074419 
0.025058 

2.8088 

11.749 
11.606 

11.391 
11.051 
10.465 
9.3535 
8.4056 
6.9940 
4.9081 

2.1961 

2.8140 

12.138 
11.993 

11.776 
11.432 
10.840 
9.7137 
8.7504 
7.3100 
5.1664 
3.8021 
2.3415 
1.0393 
0.25176 
0.08734 
0.02944 
0.021285 

2.8200 

12.607 
12.460 

12.241 
11.893 
11.293 
10.1498 
9.1686 
7.6946 
5.4828 
4.0610 
2.5226 
1.1313 
0.27613 
0.095848 
0.032310 

/ 1 \dv 
( )— 
\V2nJdT 

11.75 
11.39 
10.77 
9.96 
8.69 
7.64 
6.03 
3.73 
2.40 
1.17 
0.32 
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TABLE IX. Specific heat at constant volume Cv = 8.6368XlO16 2* dEi/dT. A =2.550X10~9 erg, J5 = 3.291X108 cm" 

81 

V o (10~8 cm) 
T (°K)\ 

280 
200 
120 
100 
80 
60 
50 
40 
30 
20 
15 
11 
10 
5 

2.7886 

8.9045 
7.9593 
6.5926 
4.6486 
3.4553 
2.1980 
1.0596 
0.30130 
0.11377 
0.039750 

2.8036 

11.2768 
10.7127 
9.0218 
8.1024 
6.7618 
4.8270 
3.6188 
2.3240 
1.1283 
0.31992 
0.12004 
0.04175 
0.03017 

2.8140 

11.2970 
10.7494 
9.1016 
8.2004 
6.8792 
4.9537 
3.7372 
2.4177 
1.1811 
0.33467 
0.12503 
0.043342 
0.031318 

2.8200 

9.1469 
8.2565 
6.9469 
5.0279 
3.8073 
2.4742 
1.2137 
0.34395 
0.12818 
0.044345 

Experimental values 

8.180 
6.820 
4.848 
3.609 
2.297 
1.109 
0.3124 

0.03024 
0.003561 

such as p=p 0 [ l - (1 .12XlO- 4 r ) -5XlO- 8 r 2 ] g/cm3, 
where p0 is the density, gives at zero deg r0= 2.7886 
XlO -8 cm while at room temperatures the lattice 
separation is 2.8140X 10-8 cm. Thus, using the approxi
mate values of 2.7893XlO-8 cm for the lattice sepa
ration at 60°K our results for (3 compared to Yates and 
Panter differ by less than 9% while at 240 °K and a 
lattice separation of 2.8088X10-8 cm they differ by 
about 0%. In Table IX the values of Cv are given for 
various lattice separations along with some experimental 
values.22 

IX. EQUATION OF STATE CURVES 

In Figs. 3 and 4 we have plotted pressure against 
lattice separation and temperature. In the pressure, 
lattice separation curve we note that the pressure goes 
to zero at certain lattice separations indicating the 
equilibrium position. In the pressure, temperature 
curve we note that the slope of the curves approach 
zero and this is as it should be since (dP/dT)v=j3/x 
where /3, the thermal expansion, goes to zero at 0°K. 

22 Private communication to E. Arase from J. A. Morrison, 
National Research Council, Canada. 

X. CONCLUSIONS 

It is seen that perturbation theory leads to a formula 
for 7i which is found to be very accurate and of wide 
applicability. Fairly good results for the physical 
properties of NaCI are found with 4̂ = 2.550X10-9 erg 
and 5 = 3.291X108 cm-1 corresponding to an ^=8.3 
for the Kellermann model. Better results could have 
been achieved with a better model, one in which next-
nearest neighbor interactions were used in calculating 
the repulsive terms and polarization effects were taken 
into account. Experimental information below 60°K 
may indicate the predicted minimum and subsequent 
increase of values to the 7 (—3) value as calculated. The 
connection found between 7* and Slater's 7 also seems 
to indicate the validity and usefulness of the per
turbation method. It is not clear what effects will occur 
by introducing anharmonic terms in the potential 
energy. However, for low temperatures (TO) we 
should not expect these terms to be very significant. 

The contention that 7(2)« 7(0) is not a good approxi
mation makes it necessary to calculate 7(0) directly 
from the spectrum of the 7/s unless a good interpolation 
method using y(s) presents itself. In fact, for NaCI 
7(0)>7(2)>7(4) while 7(2) > 7 ( -3) so that in this 
case we do not have a good interpolation method if 
7(0) is unknown. 


